Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавка (8672)28-90-48 Владимир (4922) 49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Капуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3483)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37

Россия (495)268-04-70

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Саранск (8342)22-96-24
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сыктывкар (8212)25-95-17
Сургут (3462)77-98-35
Тамбов (4752)50-40-97

Казахстан (772)734-952-31

Тверь (4822)63-31-35 Тольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

https://optoedu.nt-rt.ru || oue@nt-rt.ru

Биологические модели Е33

E33.2081

Mitosis Model, 9 parts

61*41,5*9 см

COUNT Name Name, No.

E33.2082

Meiosis Model, 10 parts

E33.1923

Animal Cell Model Puzzle, Set of 24

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1915

Hydra Model

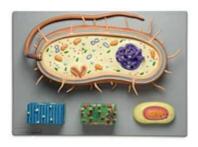
Pramecium Model

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2071

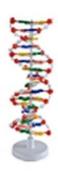
DNA Structure Simulation Kit

E33.1920


Plant Cell Model

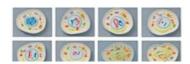
This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the cytology of an eukaryotic cell. The typical structures, such as microvilli, flagellum, mitochondria, nucleus, rough and smooth ER, are reproduced with great detail and accuracy. The model comes with an accompanying multilingual k-card identifying 24 structures.

E33.1921


Animal Cell Model

E33,1914

Bacterial Model, Set of 4


This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.5601

DNA Structure

Size 20*20*63cm, On Base

Cell Meiosis Model, 12 parts

This item is composed of 12 different pieces showing the main stages of the mammal cell meiosis (prophase I, metaphase I, anaphase I, telophase I, cytokinesis I, prophase II, metaphase II...) at an enlargement of approx. 10000 times . Size (each piece):20x15x6cm, Weight (each piece) 450g

E33,1914

E33.1912

Animal cell

Typical Viruses

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1910

Cell Mitosis Model, 9 parts

This item is composed of 9 different pieces showing the main stages of the mammal cell mitosis (prophase, metaphase, anaphase and telophase) at an enlargement of approx. 10000 times.

Size (each piece):20x15x6cm, Weight (each piece) 450g

Pork Tapeworm Model

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1908

Chromosome Model

This single piece model, 10000x enlarged, shows the structure of a human chromosome. All the main parts - centromere, telomere and loops - are extremely accurately reproduced.

Dim: 15x15x42cm Weight: 918g

Rat Dissection Model, 4parts

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1906

Fish Model

Fish Model,4 parts

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1902

Frog Embroy Development Model, 11parts

630,190

E33.1903

Enlarged Hydra Model, 1parts

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B02

Crystal Specimen, Spongilla

Crystal Specimen, Locus life cycle

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B71

Crystal Specimen, Life hisory of silk worm

Crystal Specimen, Life hisory of butterfly

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B69

Crystal Specimen, Life hisory of frog

Crystal Specimen, Life hisory of honey bee

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B75

Crystal Specimen, Life cycle of Housefly

Crystal Specimen, Kangaroo Rat

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B45

Crystal Specimen, House wall lizard

Crystal Specimen, Common frog (Rana)

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B41

Crystal Specimen, Toad (Bufo)

Crystal Specimen, Starfish

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B37

Crystal Specimen, Sea Horse

Crystal Specimen, Sea Urchin

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B27

Crystal Specimen, Sepia (Cuttle fish)

Crystal Specimen, Sea Cucumber

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B23

Crystal Specimen, Octopus

Crystal Specimen, Mussel

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B22

Crystal Specimen, Hermit Crab

Crystal Specimen, Centipede

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B21

Crystal Specimen, Crab

Crystal Specimen, Spider

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B19

Crystal Specimen, Cockroach

Crystal Specimen, Scorpion

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B15

Crystal Specimen, Leech

Crystal Specimen, Prawn

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B13

Crystal Specimen, Neries

Crystal Specimen, Earth worm

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B09

Crystal Specimen, Tapeworm

Crystal Specimen, Ascaris - Male & Female

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.27B06

Crystal Specimen, Jellyfish

Bat Skeleton

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2070

Snake Skeleton

Stuffing Specimen & skeleton of Pigeon

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2067

Dog Skeleton

Lizard Skeleton

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2063

Fish Skeleton

Frog Skeleton

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2065

Pigeon Skeleton

Model of Paleozoic SwordFish

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2062

Ribbit Skeleton

Model of Pterodactyl Paterosaur

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2060

Model of Paleozoic Tropical Fish

Model of Stegosaurus

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2057

Model of Paleozoil Brontosaurus

Model of Paleozoic Cayman

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2054

Model of Stegosaurus

Model of Tyrannosaurus Rex

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2052

Model of Stegosaurus

Model of Tyrannosaurus Rex

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2051

The Model of Chicken Embryonic Development Process

Model of Fish

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2049

Model of Frog

Model of Toad

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2047

Model of Newt

Model of Northmost Little Fish

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2045

Model of Lizard

Model of Snake

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2042

Model of Hourse's Leg(Upper & Lower)

Model of Snake

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2041

Evolution of Hourse Leg

Balance Bird

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2039

Model of Dog Ear

Cell Membrane

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2037

Frog Dissected Model

Evolution of Sheep Leg(Upper & Lower)

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2034

Archaeopteryx Fossil and Its Restoration

Cell Membrane

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2032

Model of the Hearts of Vertebrates

Locust

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2031

Model of the Brains of Vertebrates

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2030

Lizard Dissection Model

DNA Structure Simulation Kit

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2029

Biomenbrane

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2027

Schistosome In Copula

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2026

Animal Mitosis and Meiosis Set

Ultrastructure of Animal and Plant Cell

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2023

Amino Acid of Polypeptide Chain

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2024

Mitosis Set

DNA Structure

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2021

Protein Structure

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2019

DNA Structure

Ultrastructure of Animal and Plant Cell

E33.2020

DNA Activity Model

River Mussel

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2018

Model of Chloroplast

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2016

Cell Organs

E33.2012

Model of Planarian

E33.2014

River Mussel

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2015

Amphioxus

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2011

Aids-virus

River Mussel

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2010

Ameoba

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2007

Model of Plant Cell

E33.2003

Hydra

E33.2009

Earthworm Model

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2006

Model of Plant Cell

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2005

Model of Animal Cell

Model of Animal Cell

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2004

Model of Microstructure Cell

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2001

Vertebral Animal Development Set

E33.2761

Centipede and Diplopod

E33.2763

Annelid Reprsentatives

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2764

Arthropod Representatives

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2762

Comparison of Moth Butterfly

Hydra Set

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2758

Lizard

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2759

Insect's Legs

E33.2752

Mimesis of Stick Insect

E33.2757

6 Kinds of Vermin

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2754

Freshwater Mussel

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2755

Water Snake

6 Kinds of Beneficial Insect

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2753

Bat

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2751

Mimesis of Withered-leaf Butterfly

E33.2746 Hermit Crab

E33.2750

Hoptoad

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2747

Soldier Crab

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2748

Pork Tapeworm Parasit Cysticercus

Forg

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2745

Jellyfish

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2743

Pig Roundworm

E33.2738

Non-venomous Snake Skeleton

E33.2741

Life Cycle of Cicada

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2742

Life Cycle of Cockroach

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2740

Life Cycle of Butterfly

Sea Anemone

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2739

Life Cycle of Dragonfly

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2736

Rabbit Skeleton

E33.2733

Rat Dissection

E33.2734

Marine Clam Dissection

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2735

Squid Dissection

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2732

Rabbit injected

Pigeon Skeleton

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2731

Pigeon injected

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2730

Lizard injected

Fish injected

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2729

Frog injected

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

Stop

E33.2727

Sea Animal Set of 6

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2726

Root System

Bone of Torret

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2724

Comparation of 5 Hearts

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2725

Comparation of 5 Brains

E33.2719

Bone of Fish

E33.2720

Bone of Frog

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2721

Bone of Bat

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2718

Beneficial Insect Set of 10

Bone of Bird

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2717

Vermin Insect Set of 10

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2715

Insect's Pupa

E33.2709

Corn Seed Germinate History

E33.2713

Insect Set of 30

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2714

Conformation of Grasshopper

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2712

Insect Set of 27

Familiar Insect Set of 10

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2710

Bean Germinate History

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2711

Insect Set of 16

Earthworm's Life History

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2708

Frog's Life History

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2704

Grasshopper's Life History

Bee's Life History (Small)

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2706

Fly's Life History

Butterfly's Life History

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.2703

Silkworm's Life History

Bee's Life History

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.0704

Pigeon Dual-Breath System Model


DNA Structure Model Set

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.0703

DNA Structure Demo.

Micro Structure Model of Cell

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

E33.1901

Ameoba

This single-piece model, magnified approximately 13,000 times, is a very useful tool to study the . The typical structures, are reproduced with great detail and accuracy.

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владикавказ (8672)28-90-48 Волоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Ижевск (3412)26-03-58 Иваново (4932)77-34-06 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Капуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Ноябрьск (3496)41-32-12 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37

Россия (495)268-04-70

Пермы (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Саранск (8342)22-96-24
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сыктывкар (8212)25-95-17
Сургут (3462)77-98-35
Тамбов (4752)50-40-97

Казахстан (772)734-952-31

Тверь (4822)63-31-35 Тольяти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93